maintaining-class-context

Maintaining Context in TypeScript classes

TypeScript is generally pretty good at persisting this in functions but there are certain circumstances where you can (either accidentally or deliberately) get a class function to run in the wrong context.

class Example {
  private name = 'class context';

  public printName() {
    console.log(this.name);
  }
}

var example = new Example();
example.printName();
// => 'class context'
example.printName.call({ 
  name: 'wrong context' 
});
// => 'wrong context'

The most common scenario where I have accidentally caused this behaviour is where a function is bound to a click handler in Knockout and is executed in the context of the DOM element instead of the containing class.

In JavaScript you can always use myFunction.bind(this) to force the context but having to do that in the TypeScript constructor feels messy…

class Example {
  private name = 'class context';

  constructor() {
    this.printName = this._printName.bind(this);
  }

  private _printName() {
    console.log(this.name);
  }
}

var example = new Example();

example.printName();
// => 'class context'
example.printName.call({ 
  name: 'wrong context' 
});
// => 'class context'

Thankfully there’s an easy way to get TypeScript to correctly play ball.  Instead of defining the function inline, assign a lambda expression to a public class variable:

class Example {
  private name = 'class context';

  public printName = () => {
    console.log(this.name);
  }
}

var example = new Example();

example.printName();
// => 'class context'
example.printName.call({ 
  name: 'wrong context' 
});
// => 'class context'

JS Bin on jsbin.com

Much neater!

Advertisements

Individual isEditable support in ko.plus

ko.plus has supported both individual (ko.editable(...)) and object-level (ko.makeEditable(target)) editable implementations for some time but the 2 implementations differ slightly. The object-level version supports a per-object isEditable value to enable or disable the beginEdit call but this has previously been absent from the individual implementation.

From version 0.0.25 this is now supported.

var value = ko.editable();
value.isEditable = ko.observable(true); //or ko.computed, or raw value
value.beginEdit(); //has no effect
value.isEditing(); // --> false

As with the object-level version, any one of a raw value, observable value or computed value is supported and will be re-evaluated whenever beginEdit is called.

Enjoy!

Faking Mouse Events in D3

D3

D3 is a great library but one of the challenges I have found is with unit testing anything based on event handlers.

In my specific example I was trying to show a tooltip when the user hovered over an element.

hoverTargets
 .on('mouseover', showTooltip(true))
 .on('mousemove', positionTooltip)
 .on('mouseout', closeTooltip);

D3 doesn’t currently have the ability to trigger a mouse event so in order to test the behaviour I have had to roll my own very simple helper to invoke these events.

$.fn.triggerSVGEvent = function(eventName) {
 var event = document.createEvent('SVGEvents');
 event.initEvent(eventName,true,true);
 this[0].dispatchEvent(event);
 return $(this);
};

This is implemented as jQuery plugin that directly invokes the event as if it had come from the browser.

You can use it as below:

$point
 .triggerSVGEvent('mouseover')
 .triggerSVGEvent('mousemove');

It will probably change over time as I need to do more with it but for now this works as a way to test my tooltip behaviour.

 

library-api

Custom Operation Names with Swashbuckle 5.0

This is a post about Swashbuckle –  a .NET library that seamlessly adds Swagger support to WebAPI projects.  If you aren’t familiar with Swashbuckle then stop reading right now and go look into it – it’s awesome.

library-api

Swashbuckle has recently released version 5.0 which includes (among other things) a ridiculous array of ways to customise your generated swagger spec.

One such customisation point allows you to change the operationId (and other properties) manually against each operation once the auto-generator has done it’s thing.

Why Bother?

Good question.  For me, I decided to bother for one very specific reason: swagger-js.  This library can auto-generate a nice accessor object based on any valid swagger specification with almost no effort, whilst doing lots of useful things like handling authorization and parsing responses.

swagger-js uses the operationId property for method names and the default ones coming out of Swashbuckle weren’t really clear or consistent enough.

Injecting an Operation Filter

The means for customising operations lies with the IOperationFilter interface exposed by Swashbuckle.

public interface IOperationFilter
{
  void Apply(Operation operation, 
    SchemaRegistry schemaRegistry, 
    ApiDescription apiDescription);
}

When implemented and plugged-in (see below), the Apply method will be called for each operation located by Swashbuckle and allows you to mess around with its properties.  We have a very specific task in mind so we can create a SwaggerOperationNameFilter class for our purpose:

public class SwaggerOperationNameFilter : IOperationFilter
{
  public void Apply(Operation operation, SchemaRegistry schemaRegistry, ApiDescription apiDescription)
  {
    operation.operationId = "???";
  }
}

When you installed the Swashbuckle nuget package it will have created a SwaggerConfig file in your App_Start folder.  In this file you will likely have a long and well-commented explanation of all available configuration points, but to keep things simple we can insert the reference to our filter at the end:

GlobalConfiguration.Configuration
  .EnableSwagger(c =>
  {
    //...
    c.OperationFilter<SwaggerOperationNameFilter>();
  });

Getting the Name

At this point you have a lot of flexibility in how you generate the name for the operation.  The parameters passed in to the Apply method give you access to a lot of contextual information but in my case I wanted to manually specify the name of each operation using a custom attribute.

The custom attribute itself contains a single OperationId property…

[AttributeUsage(AttributeTargets.Method)]
public sealed class SwaggerOperationAttribute : Attribute
{
  public SwaggerOperationAttribute(string operationId)
  {
    this.OperationId = operationId;
  }

  public string OperationId { get; private set; }
}

…and can be dropped onto any action method as required…

[SwaggerOperation("myCustomName")]
public async Task<HttpResponseMessage> MyAction()
{
  //…
}

Once the attributes are in place we can pull the name from our filter using the ActionDescriptor

operation.operationId = apiDescription.ActionDescriptor
  .GetCustomAttributes<SwaggerOperationAttribute>()
  .Select(a => a.OperationId)
  .FirstOrDefault();

Voila!

RESTful Reporting with Visual Studio Online

image

My team uses Visual Studio Online for work item tracking and generally speaking it has pretty good baked-in reporting.  I can see an overview of the current sprint, I can see capacity and I can see the burndown.  One area that I’ve always felt it was missing, however, is a way to analyse the accuracy of our estimations.

We actually make pretty good estimations, in general terms: we rarely over-commit and it’s unusual for us to add anything significant to a sprint because we’ve flown through our original stories.  This is based on a completely subjective guess at each person’s capacity and productivity which – over time – has given us a good overall figure that we know works for us.

But is that because our estimates are good, or because our bad estimates are fortuitously averaging out?  Does our subjective capacity figure still work when we take some people out of the team and replace them with others?

This is an area where the reporting within VSO falls down and the limitation boils down to one issue: there is no way to (easily) get the original estimate for a task once you start changing the remaining work.  So how can we get at this information?

Enter the API

I had seen a few articles on the integration options available for VSO but hadn’t really had a chance to look into it in detail until recently.  The API is pretty extensive and you can run pretty much any query through the API that you can access through the UI, along with a bunch of useful team-related info.  Unfortunately the API suffers the same limitation as the VSO portal, but we can work around it using a combination of a little effort and the Work Item History API.

Getting the Data

There is nothing particularly complicated about pulling the relevant data from VSO:

  1. Get a list of sprints using the ClassificationNode API to access iterations
  2. Use Work Item Query Language to build a dynamic query and get the results through the Query API.  This gives us the IDs of each Task in the sprint
  3. For each Task, use the Work Item History API to get a list of all updates
  4. Use the update history to build up a picture of the initial state of each task

Point 4 has a few caveats, however.  The history API only records the fields that have changed in each revision so we don’t always get a complete picture of the Task from a single update.  There are a few scenarios that need to be handled:

  1. Task is created in the target sprint and has a time estimate assigned at the same time.  This is then reduced during the sprint as the Task moves towards completion
  2. Task is created in the target sprint but a time estimate is assigned at a later date before having time reduced as the sprint progresses
  3. Task is created in another sprint or iteration with a time assigned, then moved to the target sprint at a later date
  4. Task is created and worked on in another sprint, then is moved to the target sprint having been partially completed

The simplest scenario (#1 above) would theoretically mean that we could take the earliest update record with the correct sprint.  However, scenario 2 means that the first record in the correct sprint would have a time estimate of zero.  Worse, because we only get changes from the API we wouldn’t have the correct sprint ID on the same revision as the new estimate: it wouldn’t have changed!

The issue with scenario 3 is similar to #2: when the Task is moved to the target sprint the time estimate isn’t changed so isn’t included in the revision.

A simplistic solution that I initially tried was to simply take the maximum historical time estimate for the task (with the assumption that time goes down as the sprint progresses, not up).  Scenario 4 puts an end to this plan as the maximum time estimate could potentially be outside of the current sprint.  If I move a task into a sprint with only half it’s work remaining, I don’t really want to see the other half as being completed in this sprint.

Calculating the Original Estimate: Solution

The solution that I eventually went with here was to iterate through every historical change to the work item and store the “current” sprint and remaining work as each change was made.  That allows us to get the amount of remaining work at each update alongside the sprint in which it occurred; from this point, taking a maximum of the remaining work values gives us a good number for the original amount of work that we estimated.

It does rely on the assumption that Tasks estimations aren’t increased after they have started work (e.g. start at 2 hours, get 1 hour done then realise there’s more work so increase back to 2) but in this scenario we tend to create new tasks instead of adjusting existing ones (we did find more work, after all) which works for us.

Tying it all Together

Once I was able to get at the data it was relatively simple to wrap a reporting service around the implementation.  I went with node & express for the server-side implementation with a sprinkling of angular on top for the client, but visualising the data wasn’t the challenge here!

With this data available I can see a clear breakdown of how different developers affect the overall productivity of the team and can make decisions off the back of this.  I have also seen that having a live dashboard displaying some of the key metrics acts as a bit of a motivator for the people who aren’t getting through the work they expect to, which can’t be a bad thing.

I currently have the following information displayed:

  • Total remaining, completed and in-progress work based on our initial estimates
  • %age completion of the work
  • Absolute leaderboard; i.e. who is getting through the most work based on the estimates
  • Adjusted leaderboard; i.e. who is getting through the most work compared to our existing subjective estimates
  • Current tasks

I hope that the VSO API eventually reaches a point that I can pull this information out without needing to write code, but it’s good to know I can get the data if I need it!

Sorting in KnockoutJS with ko.plus

I have just finished working on some new functionality in ko.plus to allow easy sorting of observable collections.  The key features are:

  • Ability to sort collections on properties and property paths
  • Live sorting that reflects changes to observable properties
  • Binding handlers to drop in sorting functionality in tables

The full documentation is available on GitHub (https://github.com/stevegreatrex/ko.plus) but let’s take a look at some of the features here.

Basic Sorting

The sortable functionality is implemented using an extender so it can be applied to any observableArray in one line:

var myCollection = ko.observableArray([3,1,2])
                     .extend({ sortable: true });

// myCollection -> [1, 2, 3]

Without specifying any options the extender will simply sort based on the value using standard JavaScript sort mechanism.

Property Sorting

A more common use case is to sort based on a property of each object in the collection.

var myCollection = ko.observableArray([
  { id: 1, user: { name: ‘Bob’ } },
  { id: 2, user: name: ‘Adam’  } },
  { id: 3, user: { name: ‘Charlie’  } }
]).extend({
  sortable: {
    key: ‘user.name’
  }
});

The key specified can be any valid property name or property path to access the value on which to sort.  In the above example, the collection will be sorted by the name of the user property on each object.

Observable Properties

If any of the properties in the specified path are observable then these will be used for the sorting and they will react to any changes to the property.

function ItemModel(name) {
  this.name = ko.observable(name);
}

var myCollection =ko.observableArray([
  new ItemModel(‘Adam’),
  new ItemModel(‘Bob’),
  new ItemModel(‘Charlie’)
]);

myCollection()[0].name(‘Dave’);

// myCollection -> [‘Bob’, ‘Charlie’, ‘Dave’]

Binding Handlers

ko.plus includes a new binding handler to assist in sorting a collection on different keys (as would be the case in a table).

<table>
	<thead>
		<tr>
			<th data-bind="sortBy: { source: myCollection, key: 'name' }">Name</th>
			<th data-bind="sortBy: { source: myCollection, key: 'age' }">Age</th>
		</tr>
	</thead>
	<tbody data-bind="foreach: myCollection">
		<!-- etc -->
	</tbody>
</table>

The binding handler has 2 effects:

  1. Attach a click handler to sort on the specified key when the element is clicked
  2. Inject a caret as a child of the element to indicate what sorting is being applied, if any

table

Hiding ProxyApi Routes from Web API Help Pages

If you are using ProxyApi and you have tried out the Web API Help Pages feature then you will have noticed a bunch of duplicate routes showing up for all of your actions that look something like this:

GET /api/{proxy}/Controller/Action?foo=bar

ProxyApi needs to be certain of the Route-to-Controller/Action mapping in order to correctly generate the JavaScript proxies, and it achieves this by inserting a custom route at the start of the route table so that it will always take precedence (if matched).

Unfortunately the Web API ApiExplorer finds these routes, maps them to the action and generates a duplicate route for every action in your API!

Getting Rid of the Routes

Thankfully it is very simple to filter these out.  When you add the Web API help pages package to your project it will generate a LOT of code that builds and renders the help page content.  This gives you plenty of entry points in which you can intercept and hide the ProxyApi-specific routes.

For our purposes here we can subclass the ApiExplorer class and filter out any route that contains “{proxy}”.

public class CustomApiExplorer : ApiExplorer
{
  public CustomApiExplorer(HttpConfiguration config) : base(config)
  {}

  public override bool ShouldExploreAction(string actionVariableValue, HttpActionDescriptor actionDescriptor, IHttpRoute route)
  {
    if (route.RouteTemplate.ToLower().Contains("{proxy}"))
      return false;

    return base.ShouldExploreAction(actionVariableValue, actionDescriptor, route);
  }
}

Now we just need to plug this implementation in instead of the default…

//in your help page configuration
config.Services.Replace(typeof(IApiExplorer), new CustomApiExplorer(config));

…and we’re done!